Appendix to "Efficacy of Unilateral Defense in International Crises" in *International Relations*, vol.181 (September, 2015)

Shoko Kohama*

1 The Basic Model: Proof of Proposition 1

1. Pooling on stand firm:

Suppose that textbfT_h and **T**_l play stand firm, the challenger's posterior belief is $p = \frac{1}{2}$. Then, she fights if

$$\frac{1}{2}(-\omega_h + \epsilon) + \frac{1}{2}(1 - \omega_l + \epsilon) > 0$$

$$\Rightarrow \ \epsilon > \frac{1}{2}(\omega_h + \omega_l - 1)$$

This inequality always holds because $\omega_h + \omega_l < 1$ and $\epsilon \geq 0$. Because the target is not extremely strong in military power, the challenger always chooses to *fight*.

The target of both types has no incentive to deviate from *stand firm* given the challenger's strategy, because $\omega_h > \omega_l > 0$. Thus, (*stand firm*, *stand firm*), (*fight*), $p = \frac{1}{2}$ is the perfect Bayesian equilibrium.

2. Other cases:

The target of both types always deviates from *acquiesce* because *acquiesce* is strictly dominated by *stand firm*.

Thus, (stand firm, stand firm), (fight), $p = \frac{1}{2}$ is the unique perfect Bayesian equilibrium of the game.

2 The Model of Unilateral Defense: Proof of Proposition 2

1. Pooling on stand firm:

Suppose that the target pools on *stand firm*, the challenger's posterior belief is $p = \frac{1}{2}$. Then, she fights if

$$\frac{1}{2}(-\omega_h + \alpha + \epsilon) + \frac{1}{2}(1 - \omega_l + \alpha + \epsilon) > 0$$

$$\Rightarrow \ \epsilon > \frac{1}{2}(\omega_h + \omega_l - 1) - \alpha$$

This inequality always holds because $\omega_h + \omega_l < 1$, $\alpha > 0$, and $\epsilon \ge 0$. That is, the challenger always *fights*. Then, the low type \mathbf{T}_l deviates from *stand firm* to *acquiesce*, because $\omega_l < \alpha$.

^{*}Hokkaido University, skohama[at]juris.hokudai.ac.jp

2. Pooling on *acquiesce*:

Suppose that \mathbf{T}_h and \mathbf{T}_l play *acquiesce* in an equilibrium. Off the equilibrium path, the challenger fights if

$$p(-\omega_h + \alpha + \epsilon) + (1 - p)(1 - \omega_l + \alpha + \epsilon) > 0$$

$$\Rightarrow \epsilon > p(\omega_h + \omega_l - 1) + \omega - \alpha$$

This inequality always holds because $\omega_h + \omega_l < 1$, $\omega_l < \alpha$, $\epsilon \ge 0$, and $p \ge 0$. That is, the challenger always *fights*. Then, \mathbf{T}_h deviates from *acquiesce* to *stand firm* because $\omega_h > \alpha$.

3. Separation, with \mathbf{T}_h playing stand firm:

Suppose that \mathbf{T}_h plays stand firm and \mathbf{T}_l plays acquiesce, the challenger's posterior belief is p = 1. Then, the challenger's strategy is as follows: she fights if $\epsilon > \omega_h - \alpha$, and back down, otherwise.

Because ϵ is uniformly distributed between 0 and 1, the probability π that she fights *ex ante* of the realization of ϵ is $\pi = 1 - \omega_h + \alpha$. Therefore, the expected utility of \mathbf{T}_h is $U_h = \pi(\omega_h - \alpha) + (1 - \pi) > 0$ because $\omega_h > \alpha$ and $\pi > 0$. That is, \mathbf{T}_h has no incentive to deviate. Next, the expected utility of \mathbf{T}_l given the challenger's strategy is $U_l = \pi(\omega_l - \alpha) + (1 - \pi)$. Recalling that $\omega_l < \alpha$, $\lim_{\alpha \to \omega_h} U_l < 0$. Thus, there is a set of parametric values where U_l is smaller than zero so that \mathbf{T}_l does not mimic the high type.

For example, when $\omega_h = 0.8$, $\omega_l = 0.1$, and $\alpha = 0.7$, $\pi = 0.9$ and hence, $U_l = -0.44$, which is smaller than the payoff obtained by *acquiesce*.

4. Separation, with \mathbf{T}_h playing *acquiesce*:

Suppose that \mathbf{T}_h plays *acquiesce* and \mathbf{T}_l plays *stand firm*, the challenger's posterior belief is p = 0. Then, the challenger chooses to *fight* because $1 - \omega_l + \alpha + \epsilon > 0$ due to $\omega_l < \alpha$ and $\epsilon \ge 0$. Then, \mathbf{T}_h mimics \mathbf{T}_l to obtain $\omega_h - \alpha > 0$.

Thus, there is a set of parametric values where (*stand firm*, *acquiesce*), (*fight* if $\epsilon > \omega_h - \alpha$ and *back down*, otherwise), p = 1 is the unique perfect Bayesian equilibrium of the game.